RegressionTree#defineConfig

Parsed documentation:
View on GitHub
/**
*
* Defines the configuration required to read the input data and to generates
* the regression tree.
*
* @method RegressionTree#defineConfig
* @param {object[]} inputDataCols each object in this array defines a column of input
* data in the same sequence in which data will be supplied to `ingest().` It is
* defined in terms of the following details:
* @param {string} inputDataCols[].name of the column.
* @param {boolean} inputDataCols[].categorical defines column's data type — `true` indicating categorical
* **or** `false` indicating numeric; currently numeric data type is not supported.
* @param {boolean} [inputDataCols[].exclude=false] used to exclude a column during tree building.
* @param {boolean} [inputDataCols[].target=false] is set to `true` only for the target column, whose
* value needs to be predicted. Note this column must be a numeric column.
* @param {object} tree contains key value pairs of the following regression
* tree's parameters:
* @param {number} [tree.maxDepth=20] is the maximum depth of the tree after which
* learning stops.
* @param {number} [tree.minPercentVarianceReduction=10] is the minmum variance reduction
* required for a split to occur.
* @param {number} [tree.minSplitCandidateItems=50] the minimum items that must be present
* at a node for it to be split further, even after the `minPercentVarianceReduction`
* target has been achieved.
* @param {number} [tree.minLeafNodeItems=10] is the minimum number of items that
* must be present at a leaf node to be retained as an independent node. Nodes with
* less than this value size are merged together.
* @param {number} [tree.minAvgChildrenItems=2] the average number of items
* across children must be greater than this number, for a column to become a candidate
* for split. A higher number will discourage splits that creates many branches
* with each child node containing fewer items.
* @return {number} number of columns defined.
* @example
* // Define each column.
* var columns = [
*   { name: 'model', categorical: true, exclude: true },
*   { name: 'mpg', categorical: false, target: true },
*   { name: 'cylinders', categorical: true },
*   { name: 'displacement', categorical: true, exclude: false },
*   { name: 'horsepower', categorical: true, exclude: false },
*   { name: 'weight', categorical: true, exclude: false },
*   { name: 'acceleration', categorical: true, exclude: false },
*   { name: 'year', categorical: true, exclude: true },
*   { name: 'origin', categorical: true, exclude: false  }
* ];
* // Define parameters to grow the tree.
* var treeParams = {
*   minPercentVarianceReduction: 2.5,
*   minLeafNodeItems: 10,
*   minSplitCandidateItems: 30,
*   minAvgChildrenItems: 3
* };
* // Define the configuration using above 2 variables.
* myRT.defineConfig( columns, treeParams );
* // -> 8
*/
No suggestions.
Please help! Open an issue on GitHub if this assessment is incorrect.